Среда
05.10.2022
09:20
Категории раздела
Авиация, астрономия и космонавтика
Банковское, биржевое дело и страхование
Безопасность жизнедеятельности
Безопасность жизнедеятельности, Охрана труда
Биология и естествознание
Бухгалтерский учет и аудит
Военная кафедра
География и экономическая география
Геология и геодезия
Государство, юриспруденция и право
Журналистика
Иностранные языки и языковедение
История, исторические личности
Коммуникации, связь, цифровые приборы и радиоэлект
Кулинария
Культура и искусство
Литература
Маркетинг, реклама
Математика
Медицина
Международные отношения
Менеджмент
Музыка
Педагогика
Политология
Программирование, компьютеры и кибернетика
Производство и Технологии
Психология
Религия и мифология
Сельское хозяйство
Социология
Спорт и туризм
Строительство и архитектура
Таможенная система
Транспорт
Физика
Философия
Финансы, деньги и кредит
Химия
Экология
Экономика и экономическая теория
Экономико-математическое моделирование
Этика и эстетика
Разные рефераты
Поиск
Авторам
Если Вы являетесь автором каких-либо рефератов, курсовых, дипломных работ и т.д. Если у Вас есть опыт, или есть - стремление и желание опубликовать свои работы у нас, то Вам необходимо зарегистрироваться на сайте и отправить сообщение на страницу формы связи с нашим редактором. Мы ответим на Ваше письмо (кроме выходных) в течении 24 часов!
Контент сайта
Весь контент сайта предоставлен исключительно для ознакомительных целей проекта Superreferat Информация публикуемая на сайте регулируется администрацией, которая руководствуется нормами Закона об Авторском Праве. Все файлы проходят тщательную проверку на вирусы, с помощью антивируса Dr.Web! Все опубликованные на сайте материалы, обязательно должны быть одобрены их авторами! В противном случае - материалы удаляются.
На учёбе
Онлайн всего: 1
Гостей: 1
Пользователей: 0
Главная » Файлы » Рефераты на русском » Экономико-математическое моделирование

Лабораторная работа: Парный регрессионный анализ

 
92.5 Kb    |   Файл проверен «Доктор Веб» ©
04.12.2015, 04:32
МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ
КАЗАХСТАН
СЕВЕРО-КАЗАХСТАНСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ
ИМ. М. КОЗЫБАЕВА
ЛАБОРАТОРНАЯ РАБОТА №1
ВАРИАНТ №13
НА ТЕМУ: ПАРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ
Выполнила:
студент
Фамилия:
Проверила: преподаватель
Ф.И.О:

ПО ДИСЦИПЛИНЕ: ЭКОНОМЕТРИКА
Петропавловск, 2008год

СОДЕРЖАНИЕ
1. ОПИСАНИЕ ЗАДАНИЯ
2. ОПИСАНИЕ РЕШЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ
Построение линейной регрессионной модели
Построение степенной регрессионной модели
3. Сравнительный анализ расчетов, произведенных с помощью формул Excel и с использованием «Пакета анализа»

1. ОПИСАНИЕ ЗАДАНИЯ
На основании данных нижеприведенной таблицы построить линейное и степенное уравнения регрессии.
Для построенных уравнений вычислить:
1) коэффициент корреляции;
2) коэффициент детерминации;
3) дисперсионное отношение Фишера;
4) стандартные ошибки коэффициентов регрессии;
5) t — статистики Стьюдента;
6) доверительные границы коэффициентов регрессии;
7) усредненное значение коэффициента эластичности;
8) среднюю ошибку аппроксимации.
На одном графике построить исходные данные и теоретическую прямую.
Дать содержательную интерпретацию коэффициента регрессии построенной модели. Все расчеты провести в Excel с использованием формул и с помощью «Пакета анализа». Результаты, полученные по формулам и с помощью «Пакета анализа», сравнить между собой.
По нижеприведенным данным исследуются данные по среднедневной заработной плате yi, (усл.ед.) и среднедушевому прожиточному минимуму в день одного трудоспособного xi, (усл.ед.):
Yi
132
156
143
138
144
155
136
159
127
159
127
136
149
156
Xi
84
96
89
80
86
97
91
102
83
115
72
86
95
100
Yi
141
162
148
155
171
157
130
158
136
142
144
130
157
145
Xi
91
96
77
82
108
102
88
97
81
97
88
76
94
91
Yi
125
138
145
171
127
133
164
134
Xi
76
85
102
115
72
86
100
76
а) Выполнить прогноз заработной платы yi при прогнозном значении среднедушевого прожиточного минимума xi, составляющем 117% от среднего уровня.
б) Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

2 ОПИСАНИЕ РЕШЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ
Построение линейной регрессионной модели
Линейное уравнение регрессии:

,
где
Чтобы рассчитать значения , мы добавляем к таблице дополнительные столбцы x*y, х2 , рассчитываем их общую сумму по 36 регионам и их среднее значение.
При вычислении b1 и b0 получены результаты:
b1 = 0,991521606,
b0 = 54,33774319
Значит линейное уравнение регрессии примет вид:
= 54,33774319 + 0,991521606x
Индекс b1 = 0,991521606 говорит нам о том, что при увеличении заработную плату на 1 ед. прожиточный минимум увеличивается на 0,991521606.
Зная линейное уравнение регрессии, заполняем соответствующую колонку для каждого из регионов. В результате мы можем посчитать общую сумму для 36 регионов. Она равна 2320 (усл.ед.). Эта сумма равна общей сумме y для 36 регионов, т.е. , следовательно, коэффициенты регрессии b1 и b0 рассчитаны, верно.
1. Рассчитаем коэффициент корреляции:
, где
Для этого надо еще добавить в таблицу значения y2 и рассчитать общую сумму по 36 регионам и его среднее значение.
При вычислении и получены результаты:
=9,765812498
= 93,87081405
Следовательно, rxy = 0,103152553. Значит можно сделать вывод, что между х и у, то есть между постоянными расходами и объемом выпускаемой продукции не наблюдается никакой связи.
Рассчитаем коэффициент детерминации:
D = r2 xy * 100
D = 1,064044912%
Следовательно, величина постоянных расходов только на 1,064044912% объясняется величиной объема выпускаемой продукции.
2. Рассчитаем дисперсионное отношение Фишера:
, где n – число регионов
Следовательно, n = 36
F расч = 0,150568403
Найдем Fтабличное : k1 = m, m = 1(т.к. на y влияет только один фактор х),
k2 = n- m-1. Значит k1 = 1, k2 = 36-1-1= 34. Находим табличное значение F на пересечении k1 и k2. Получаем, что Fтабличное = 2,145.
Так как Fрасчетное < Fтабличное значит уравнение статистически не значимо.
3. Рассчитаем стандартные ошибки коэффициентов регрессии:

где
Для этого надо еще добавить в таблицу значения y - , (y - )2 , и рассчитать общую сумму по 36 регионам и их среднее значение.
При вычислении Sост было получено, что
Sост = 382,9325409.
Следовательно,
Sb1 = 27,7984546,
Sb0 = 918,3564058
4. Рассчитаем доверительные границы коэффициентов регрессии:
, где
tтабл находится по таблице t-критерия Стьюдента при уровне значимости 0,05 и числе степенной свободы равной 34.
Значит tтабл =2,145.
= 1969,87449
= 59,62768512
Следовательно, можно рассчитать доверительные границы коэффициентов регрессии:

Значит можно сделать вывод, что коэффициенты b1 и b0 значимы, так как они лежат в этих интервалах, то есть модель адекватна.
5. Рассчитаем t — статистики Стьюдента:

Получается, что = 0,05916847, = 0,035668228. Значит коэффициент tb1 не значим, т.к. tb1 меньше tтабл и tb0 не значим, так как меньше tтабл, .
Рассчитаем индекс корреляции:

Для этого надо еще добавить в таблицу значения y - , (y - )2 , и рассчитать общую сумму по 36 регионам и их среднее значение.
В результате получаем, что Ir =0,103152553=rxy . Следовательно, индекс корреляции и коэффициент корреляции рассчитаны, верно.
6. Рассчитаем значение коэффициента эластичности:

В результате Э = 0,625256944. Коэффициента эластичности показывает, что на 0,625256944% изменится среднедневная заработная плата (у) при изменении на 1% среднедушевой прожиточный минимум(х).
7. Оценить качество модели можно с помощью коэффициента аппроксимации:

Для этого надо еще добавить в таблицу значения |(y - )/y| и рассчитать общую сумму по 36 регионам.
В результате получаем, что А = 3,100451368, следовательно, коэффициент аппроксимации не принадлежит интервалу [0,7;1]. Значит можно сделать вывод о том, что модель не качественная.
Рассчитаем точность прогноза:
, где
хр = 10698,1875
=-46434,55
Значит точность прогноза удельных постоянных расходов при прогнозном значении объема выпускаемой продукции, составляющей 119% от среднего уровня составляет 46434.
Рассчитаем ошибку прогноза:

= 6907,6
Значит, ошибка прогноза составляет 6907,6. Вычислим теперь на основе выше рассчитанного доверительный интервал:

Построение степенной регрессионной модели
Степенное уравнение регрессии имеет следующий вид:
, где
Для этого надо еще добавить в таблицу значения lny и x* lny , рассчитать общую сумму по 28 предприятиям и их среднее значение.
При вычислении b1 и b0 получены результаты:
b1 = 0, 90
b0 = 167325, 81
Значит степенное уравнение регрессии примет вид:
= 167325,81*0,90х
1. Рассчитаем коэффициент корреляции:

Следовательно, rxy = 0,96. Значит можно сделать вывод, что между Х и у, то есть между постоянными расходами и объемом выпускаемой продукции связь не тесная.
2. Рассчитаем коэффициент детерминации:
D = r2 xy * 100
D =92, 95830 (%)
Следовательно, величина постоянных расходов только на 92, 27 % объясняется величиной объема выпускаемой продукции.
3. Рассчитаем дисперсионное отношение Фишера:

F расч = 343,233.
Fтабл = 4, 20. (нахождение см. в линейной регрессионной модели)
Так как Fрасчетное > Fтабличное значит уравнение статистически значимо.
4. Рассчитаем стандартные ошибки коэффициентов регрессии:

, где
При вычислении Sост было получено, что
Sост = 6758,991.
Следовательно,
Sb 1 = 316,97
Sb 0 = 3563,99.
6. Рассчитаем доверительные границы коэффициентов регрессии:
, где
табл находится по таблице t-критерия Стьюдента при уровне значимости 0,05 и числе степенной свободы равной 26.
Значит tтабл = 2,0555.
= 7325,59
= 651,33
Следовательно, можно рассчитать доверительные границы коэффициентов регрессии:

Значит можно сделать вывод, что коэффициенты b1 и b0 значимы, так как они лежат в этих интервалах, то есть модель адекватна.
5. Рассчитаем t — статистики Стьюдента:

Получается, что = 33,61, = -18,53. Значит коэффициент tb1 не значим, т.к. tb1 меньше tтабл и tb0 значим, так как больше tтабл, следовательно, один коэффициент tb0 оказывает воздействие на результативный признак.
Рассчитаем индекс корреляции:

В результате получаем, что Ir = 0,96351 = rxy . Следовательно, индекс корреляции и коэффициент корреляции рассчитаны, верно.
7. Рассчитаем значение коэффициента эластичности:

В результате Э = 0,000161736. Коэффициента эластичности показывает, что на 0,000161736 % изменится результат постоянных расходов (у) при изменении на 1% объема выпускаемой продукции (х.).
8. Оценить качество модели можно с помощью коэффициента аппроксимации:

В результате получаем, что А = 0,341604171, следовательно, коэффициент аппроксимации не принадлежит интервалу [0,7;1]. Значит можно сделать вывод о том, что модель не качественная.
Рассчитаем точность прогноза:
, где
хр = 13,5687
=46432,58
Значит точность прогноза удельных постоянных расходов при прогнозном значении объема выпускаемой продукции, составляющей 142,7% от среднего уровня составляет 168444,9249.
Рассчитаем ошибку прогноза:

= 6947,015806
Значит, ошибка прогноза составляет 6907,6. Вычислим теперь на основе выше рассчитанного доверительный интервал:

3.Сравнительный анализ расчетов, произведенных с помощью формул Excel и с использованием «Пакета анализа»
Если сравнивать между собой результаты, полученные при расчетах линейной и степенной регрессионной модели, то можно выделить следующее:
1. Значение b1 в линейной регрессионной модели < b1 в степенной регрессионной модели, т.е. -5870,33<0,90 на 5871,23
2. Значение b0 в линейной регрессионной модели < b0 в степенной регрессионной модели, т.е 119784,3<167325,81 на 47541,51
3. rxy в линейной регрессионной модели >rxy в степенной регрессионной модели,
4. т.е 0,964148>0,96056 на 0,003588
5. D в линейной регрессионной модели < D в степенной регрессионной модели, т.е 92.95825<92, 95830 на 0.00005
6. F в линейной регрессионной модели > F в степенной регрессионной модели, т.е 310,27>343,233.на 32.963
7. Sост в линейной регрессионной модели > Sост в степенной регрессионной модели, т.е 6758.98>6758,991на 0,011
8. Sb 1 в линейной регрессионной модели < Sb 1 в степенной регрессионной модели, т.е 316.87<316,97 на 0,10
9. Sb 0 в линейной регрессионной модели > Sb 0 в степенной регрессионной модели, т.е 89,52>89,51 на 0,01.
Так же за счет того, что в линейной регрессионной модели отличается от в степенной регрессионной модели доверительные границы коэффициентов регрессий разные, так же различаются и .
1. в линейной регрессионной модели < в степенной регрессионной модели, т.е 33,61>40,63 на 7.02
2. в линейной регрессионной модели < в степенной регрессионной модели, т.е. -18,53<1,18 на 19.71
3. Ir в линейной регрессионной модели < Ir в степенной регрессионной модели, т.е 0,960563<0,96351 на 0, 002947
4. Э в линейной регрессионной модели > Э в степенной регрессионной модели, т.е -1,06>0,000161736 на 1.2058
5. А в линейной регрессионной модели < А в степенной регрессионной модели, т.е 2,83<0,341604 на 2.488396
Из выше сказанного, можно сказать, что практически все значения, полученные в степенной регрессионной модели больше, чем результаты, полученные в ходе вычисления линейной регрессионной модели. Прежде всего, это происходит за счет того, что в линейной регрессионной модели больше в степенной регрессионной модели.
Если сравнивать значения, полученные в линейной регрессионной модели с помощью Excel с «Пакетом анализа», то значения получаются те же самые, т.е. наблюдается полное совпадение результатов.
При построении графиков исходных данных с теоретической прямой можно сказать, что есть небольшое различие при построении теоретической прямой в линейной регрессионной модели и в степенной регрессионной модели. В степенной регрессионной модели теоретическая прямая немного отклоняется от прямой в линейной регрессионной модели. Так же можно наглядно увидеть, что на промежутке от 900 до 1050 (ед.) наблюдается наибольшая концентрация «наших значений», т.е. на этом промежутке происходит наибольшее пересечение объема выпускаемой продукции с постоянными расходами.


Категория: Экономико-математическое моделирование, Лабораторные работы
Просмотров: 478 | Загрузок: 92 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]